CONSTRUCTION OF A FIXED POINT FOR
CONTRACTIONS IN BANACH SPACE

BY
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ABSTRACT
A method for constructing fixed points of contractions in uniformly convex
Banach spaces is developed. The fixed point obtained is the limit of one
sequence that always converges (provided that a fixed point exists).

Introduction. Let X be a uniformly convex Banach space. Any contraction
that takes a bounded closed convex set into itself has a fixed point (cf. Browder
[1] and Kirk [4]). It is also known that a contraction has a fixed point if and
only if the sequence of Picard iterates is bounded (cf. Kirk [4] and Browder and
Petryshin [3]). A further result is that a fixed point of a contraction can be obtained
as a limit of fixed points of strict contractions (cf. Browder [2]). Krasnoselskii
[5] showed that if T is a contraction with range in a compact set then the defi-
nition x,,, = #(x, + Tx,) will result in a sequence converging to a fixed point of T.
In this note we show in the non-compact case how to construct one sequence that
always converges to a fixed point, provided that such a point exists. The con-
struction is rather complicated.

It is possible to construct a complicated example showing that Krasnoselskii’s
construction will not do in the general case (J. Lindenstrauss, oral communica-
tion). Probably, a simple example is feasible and should be found.

Let X be uniformly convex. Denote «(t) by:

(1.1) at) =4sup2 — [ x +y

I

=1,

; x=y|=09.

Then «(f) - 0 implies ¢t — 0.
For x,y,ze X denote a = max{” X—w

y—w ”} Then clearly

2

(1.2) 4G+ ») —w| éa(l—a(w)).

a
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It is well known and easy to verify that a - o((|| x — v |)/a) is a monotone decreas-
ing function of a. Indeed, consider points x,y,z = 4(x + ¥), w and w, where w,
is on the segment joining z and w. Suppose also that " xX—w ” = ” y—w ” Then

[x=wl—=lz=wlslx=wi]+w=w]=(z=wil+[w=wp

(1.3)

=[x=wi]=lz=wi]sb-]z=m|

where b =max {|x—w|, |y —w,|}. The right hand side of (1.3) can be
taken to be close to b - a(||x — y| /b) while the left hand side is not smaller than
a. oc(ﬂx—y“/a). Hence, b - oc((” xX—y H)/b) is not smaller than a - oz((u X — y“)/a).

Tis a contraction if | Tx — Ty || < || x — y || for x, y € D. Let Tbe a contraction
that takes some closed convex set C into itself. C is not necessarily bounded and
may well coincide with X.

The construction below of a convergent sequence {y,} was motivated by the
following reasoning. The definition y,,, = Ty, does not result, in general, in a
convergent sequence. Let us modify the process by defining, for some n
Vus1 = 3(y, + y1) where I < n. Our aim is to reduce the distance to some unknown
fixed point w. The gain is dependent on two contrasting factors: i) The distance
between y, and y,. The larger the distance, the bigger the gain. ii) The differences
between ||y, —w| and ||y, —w

], the larger the difference the smaller the gain.
Had we known the distances ||y, — w| and ||y, — w| we could have specified a
rule of the following type: Take the combination 4(y, + y;) when [| yi— w]l
—|ya—w| =6 and |y,—y| ze0). Since the distances ly.—w| and
H Vi—w H are not known we devise a different measure to be constructed simul-
taneously with the sequence.

For that purpose, we choose a fixed sequence of positive numbers g — 0.
Together with y, we construct an integer valued infinite vector

(my(n), my(n), -+, my(n), -*)

where only a finite number of the components do not vanish. For such vectors
define the sets of integers S(k,n) as follows: I e S(k,n) if I < n and m(l) = m(n)
for i < k. The construction is inductive. Choose arbitrary point in the space,
denote it by y, and set m,(0) = 0 for all i. The passage from n to n+ 1 is as
follows.
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Look at the first k for which either S(k,n) is empty or for some Ie S(k,n)
]J Vu— Vi “ = &. (Since g, — 0 such k exists). If S(k, n) is empty define

(14) Yn+1 = Tym mi(n + 1) = ml(n) S(ka n) = ¢

Otherwise, define

(1.5) Yns1=3(Va + ¥
(1.6) myin + 1) = myn) i<k
(1.7 mn+1) =m(n)+1
(1.8) mn+1) =0 i>k

The integer valued vector m(n) introduces a lexicographic ordering of the
integers n. Denote this ordering by -> - (lec). It is easy to verify that this ordering
is compatible with the natural ordering. Specifically:

1.9 nzlen> l(lec) or n=1 (lec)
(1.10) n+l=n(ec)ey,., =Ty,

The lexicographic ordering according to the first k letters m(n), i £ k will be
denoted by - > - (lec, k). Also this ordering is compatible with the natural order.
It has the properties:

(1.1 n>l<n> I(lec,k) or n=1 (lec,k)
(1.12) n>1and n=1(ec k)e1ecSk,n).

A éonsequence of the last relations is:

Lemma 1. S(k,n) is composed of all the integers l:ly<l<n. If
n — 1¢ S(k,n) then S(k,n) is empty. If j > k then S(j,n) < S(k,n); in particular
if S(k,n) is empty so is S(j,n).

The fact that we can estimate the distance of y, to a (unknown) fixed point w

is expressed by the following lemma.

LeMMA 2. Let w be an arbitrary fixed point of T. Let k be a fixed integer.
Denote H Vo — W H =a. Then my(n) =r implies

(1.13) |ya=w|<a (1 — r-a(s—‘;‘)).

Proof. By induction on n. (1.13) is certainly true for y,. Suppose that it is
true for all integers not exceeding n. Let m(n + 1) = r. We have to investigate
the following four possible cases.
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) Yarr = Tymmfn+ ) =mn)=r
ii) Vor1 = 30t y) and m@m=m(=r
iif) Vat1 = 3uty) and mm)=m()=r—1
iv) Yarr = 3(p+y) and mn+1)=0
For case i):

[ass=wl=1Ton=wl = |Tya=Tw| <[ ya—w].

Since (1.13) holds for y, it holds for y,,, as well.
For case ii):

(1.14) | yns1—w] < max{| y,— wl. | yi— |}

establishing again (1.13).
For case iii) we use uniform convexity.

(1.15) [ yer—wl] = b(l B “(%))
sy v}

Since b < a (by the induction hypothesis) it follows that

where b = max{| y,— w|

cof B ca (B
(1.16) b a(b)ga a(a).
The inductive hypothesis is:
(1.17) b< a(l —(r— 1)a(‘:i)).

Substitute now (1.17) and (1.16) in (1.15) to get the desired estimate. In case
iv) we use (1.14) and the fact that r = 0, establishing the lemma.

REMARK. |y, —w| is not necessarily a monotone function of .
Our main result is:

THEOREM. The sequence y, defined in (1.4) or (1.5) converges to a fixed
point of T if (and obviously only if) T has one.
The theorem will be proved via the following three propositions.

PROPOSITION 1: If T has a fixed point then m(n) is constant for sufficiently
large n (depending on i).
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PropostTION 2. If, for all i, m(n) is constant for sufficiently large n (de-
pending on i) then {y,} converges.

ProposITION 3: If {y,} converges it converges to a fixed point of T.

Proor oF ProrosiTioN 1. The left hand side of (1.13) is non-negative, there-
fore the m,(n) are bounded, precisely:

(1.18) r=myn) < a[oc(%)] o

The my(n) are constructed so that either m(n) = m(n — 1) or m(n) = 0. The
last case holds when for some ! < k: my(n) = m(n — 1) + 1. Hence, the first of
these integer valued functions: m,(n) is non-decreasing. Since, by (1.18) it is
bounded it must be constant for n = n,. For n = n, m,(n) will be non-decreasing
and again, by (1.18) it must be constant for n = n,. Thus, inductively, the pro-
position is established for all k.

Proor or Prorosition 2. Let ¢ be given. Choose ¢, < ¢ and consider n;, so
large that my(n) is constant for all i < k and n = n,. By the definition of S(k,n)
it follows that /e S(k,n) for n > I > n,. The inequality H Vo= Wi H = g, implies
now by the definition of m/(n) that for some i < k my(n + 1) > my(n) contrary to
the assumption of constancy. Thus,

yn—y,H <g <egfor all n,l:n>1>n,
1.e., Cauchy’s criterion is satisfied.

Proor oF ProPoSITION 3. Denote y =1lim y,. We will show that for any
index n there exists an r so that y,,,;; = Ty,4, If this is the case then, clearly,
y=Ty.

Now, if y,,, 7 Ty, it means that, for some I, and k{, y,+1 = 3.+ »1)
where [, € S(ky, n). Hence, m, (n+1)>m,; (n). Therefore, by Lemma 1 Stky,n+1)
is empty and, consequently, S(j,n + 1) is empty for j> k. If y,10# Ty,
it means that, for some index k,, there exists I, < n + 1 so that I, € S(k,,n + 1).
Since S(j,n + 1) is empty for j = k, it follows that k, < k,. Continuing this way,
we get, as long as y,,;4q % Ty,+; sequences of integers {k;} and {/;} so that
I;€ S(ki,n +1i). By the preceding argument the sequence {k;} is strictly decreasing;
hence, it has only a finite number of terms. Thus, for some 7, V,i 401 = TVpir
This concludes the proof of the proposition as well as that of the theorem.
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