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ABSTRACT 

A method for constructing fixed points of contractions in uniformly convex 
Banach spaces is developed. The fixed point obtained is the limit of one 
sequence that always converges (provided that a fixed point exists). 

Introduction. Let X be a uniformly convex Banach space. Any  contract ion 

that  takes a bounded  closed convex set into itself has a fixed point  (cf. Browder  

[-1] and Ki rk  [--43). I t  is also known  that  a contract ion has a fixed point  if  and 

only if the sequence of  Picard iterates is bounded  (cf. Ki rk  [-43 and Browder  and 

Petryshin [--3]). A fur ther  result is that  a fixed point  o f  a contract ion can be obtained 

as a limit o f  fixed points  o f  strict contract ions (cf. Browder  [--23). Krasnoselski i  

[5] showed tha t  if  T is a contract ion with range in a compac t  set then the defi- 

nit ion x,+ 1 = ½(x, + Tx,)  will result in a sequence converging to a fixed point  o f  T. 

In  this note  we show in the non-compac t  case how to construct  one sequence tha t  

always converges to a fixed point ,  provided that  such a point  exists. The con- 

struction is ra ther  complicated.  

I t  is possible to construct  a complicated example  showing that  Krasnoselski i ' s  

construct ion will not  do in the general case (J. Lindenstrauss,  oral  communica -  

tion). Probably ,  a simple example  is feasible and should be found.  

Let  X be uni formly  convex. Denote  c~(t) by:  

(1.1) o,(t)=½sup(2-[lx+yll;l[xll l, liyll<=l,[Ix-y[l=o. 
Then  e(t) ~ 0 implies t ~ O. 

Fo r  x , y , z  ~ X denote  a = max  ill x - w  II, II y -  w I1~. Then clearly 

( (llx ,l)) 
(1.2) II ½(x + y) - w l[ < a 1 - c~ . a 
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It is well known and easy to verify that a .  c~((lt x - y 11)/a) is a monotone decreas- 

ing function of a. Indeed, consider points x , y , z  = ½(x + y),  w and wt where wt 

is on the segment joining z and w. Suppose also that II x - w II ->- II y - w II. Then 

II x - w [I - It z - w 11 ~ U ~ - w l II + It w - w~ U - (U z - w l II + I1 ~ - ~ U) 

(1.3) 
--II x - w l I I -  II z -  w l II--< b - I I  z - w ~ l l  

where b = m a x  { l l x - w ,  ll, [ly-wll[}. The right hand side of  (1.3) can be 

taken to be close to b" ~(llx - y [ I / b )  while the left hand side is not smaller than 

a. e ( l l x - y l l / a ) .  Hence, b " e((ll x - y II)/b) is not smaller than a . ~(([! x - Ylt) /a) .  

r i s a  contract ion  if  1[ r x -  rYl[  =< [ I x -  YI[ for x,y~D. Let r b e  a contraction 

that takes some closed convex set C into itself. C is not necessarily bounded and 

may well coincide with X. 

The construction below of a convergent sequence {y,} was motivated by the 

following reasoning. The definition Y,+t = Ty,,  does not result, in general, in a 

convergent sequence. Let us modify the process by defining, f o r  some  n 

Y,+ 1 = ½(Y, + Y~) where l < n. Our aim is to reduce the distance to some unknown 

fixed point w. The gain is dependent on two contrasting factors: i) The distance 

between y,  and Yr. The larger the distance, the bigger the gain. ii) The differences 

between il Y, - w 11 and II y , -  w II, the larger the difference the smaller the gain. 

Had we known the distances II Yn-  w i[ and It Yz-  w 11 we could have specified a 

rule of the following type: Take the combination ½(yn + y,) when [ly,-wll 
- I1 Y" - w 11 -- ~ and II Y~ - Yt II --> ~(~). Since the distances I1 y ~ -  w I[ and 

II y , -  w I1 are not known we devise a different measure to be constructed simul- 

taneously with the sequence. 

For  that purpose, we choose a fixed sequence of positive numbers ek ~ 0. 

Together with y,  we construct an integer valued infinite vector 

(m l(n), mz(n), ..., rag(n), . . . )  

where only a finite number of the components do not vanish. For  such vectors 

define the sets of integers S(k ,  n) as follows: 1 ~ S(k ,  n) if l < n and mi(/) = m,(n)  

for i < k. The construction is inductive. Choose arbitrary point in the space, 

denote it by Yo and set m,(0) = 0 for all i. The passage from n to n + 1 is as 

follows. 
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Look  at the first k for  which either S(k, n) is empty or for  some l~ S(k, n) 

11Y, - Yt ]l > ek. (Since ek ~ 0 such k exists). I f  S(k, n) is empty define 

Y.+x = Ty.,  mi(n + 1) = ms(n ) S(k, n) = 9J (1.4) 

Otherwise, define 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

Yn+x = ½(Y, + YI) 

mi(n + 1) = mi(n) i < k 

mk(n + 1) = mk(n) + 1 

m , ( n + l )  = 0  i > k  

The integer valued vector ms(n) introduces a lexicographic ordering of  the 

integers n. Denote  this ordering by • >>. (lec). It is easy to verify that  this ordering 

is compatible with the natural  ordering. Specifically: 

(1.9) n >= l . ~ n  >>/(lee) or  n ---- l (lee) 

(1.10) n + 1 -= n ( l ec )c~y ,+  1 = Ty ,  

The lexicographic ordering according to the first k letters mi(n), i <= k will be 

denoted by • >> • (lec, k). Also this ordering is compatible with the natural  order.  

It has the propert ies:  

(1.11) n > l.¢~n >> l (lec, k) or n -~ l (lec, k) 

(1.12) n > 1 and n = l (lec, k ) ~ l ~ S ( k , n ) .  

A consequence of  the last relations is: 

LEMMA 1. S(k ,n)  is composed of  all the integers l: lo < l < n .  I f  

n - 1 ¢S (k ,n )  then S(k,n)  is empty. I f j  > k then S(j ,n)  c S(k,n);  in particular 

i f  S(k, n) is empty so is S(j, n). 

The  fact that  we can estimate the distance o f  y ,  to a (unknown) fixed point  w 

is expressed by the following lemma. 

LEMMA 2. Let w be an arbitrary f ixed point oJ T. Let k be a fixed integer. 

Denote II yo - w I1 = a. Then ink(n) = r implies 

Proof.  By induction on n. (1.13) is certainly true for  Yo- Suppose that  it is 

true for  all integers not  exceeding n. Let  mk(n + 1) = r. We have to investigate 

the following four  possible cases. 
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i) Y,+t = ry~,rnk(n + 1) = rnk(n) = r 

ii) Y.+t = ½(Yn+Y,) and mk(n) = ink(1) = r 

iii) Y~+I = ½(Y,+Y,) and m k ( n ) = m k ( 1 ) = r - - 1  

iv) y,+~ = ½(y,+y~)  and m k ( n + l ) = O  

For  case i): 

[ l y . + l -  wl] = Ifry.-wl[--IITY.- rwll ~ II y . -  w II. 

Since (1.13) holds for y ,  it holds for Yn+l as well. 

For  case ii): 

(1.14) II Y,+ 1 -  v0 II <= max {ll y , -  w II, II y , -  w I}} 

establishing again (1.13). 

For  case iii) we use uniform convexity. 

where b = max {1[ Y~- w II' II Y i -  w tl}" 

Since b < a (by the induction hypothesis) it follows that  

The inductive hypothesis is: 

Substitute now (1.17) and (1.16) in (1.15) to get the desired estimate. In case 

iv) we use (1.14) and the fact that  r = 0, establishing the lemma. 

RE~AR~. II Yn-- W 11 is not  necessarily a monotone function of  n. 

Our main result is: 

THEOREM. The sequence y,  defined in (1.4) or (1.5) converges to a fixed 

point of T i f  (and obviously only if) T has one. 

The theorem will be proved via the following three propositions. 

PROPOSITION 1 : I f  T has a fixed point then m~(n) is constant for suj~ciently 

large n (depending on i). 
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PROPOSITION 2. If, for all i, rni(n ) is constant for  sufficiently large n (de- 

pending on i) then (y,)  converges. 

PROPOSITION 3 : I f  {y,) converges it converges to a fixed point of T. 

PROOF OF PROPOSITION 1. The left hand side of (1.13) is non-negative, there- 

fore the mk(n ) are bounded, precisely: 

(1.18) r = rng(n) < a 

The mk(n ) are constructed so that either mk(n ) > mk(n -- 1) or ink(n) = 0. The 

last case holds when for some l < k: rnt(n) = mt(n - 1) + 1. Hence, the first of 

these integer valued functions: rnl(n ) is non-decreasing. Since, by (1.18) it is 

bounded it must be constant for n > n~. For n > n~ mz(n) will be non-decreasing 

and again, by (1.18) it must be constant for n > n2. Thus, inductively, the pro- 

position is established for all k. 

PROOF OF PROPOSITION 2. Let e be given. Choose ~k "~ e and consider n k so 

large that mi(n ) is constant for all i __< k and n __> n k. By the definition of S(k, n) 

it follows that l ~ S ( k , n )  for n > l >  nk. The inequality f lY,-  Yzll > ek implies 

now by the definition of mi(n ) that for some i <_ k mi(n + 1) > mi(n ) contrary to 

the assumption of constancy. Thus, 1[ Y , -  Yt 11 < ek < e  for all n, l: n > l > nk, 

i.e., Cauchy's criterion is satisfied. 

PROOF OF PROPOSITION 3. Denote y = lim y,. We will show that for any 

index n there exists an r so that Y,+r+l = Ty,+r. If this is the case then, clearly, 

y = Ty.  

Now, if y,+~ # Ty ,  it means that, for some l~ and k~, y,+~ = ½ ( y , +  Yz,) 

where 11 ~ S(kl ,  n). Hence, mk~(n + 1) > m~,l(n ). Therefore, by Lemma 1 S(kl, n + 1) 

is empty and, consequently, S(j ,n  + 1) is empty for j > k~. If Y,+2 # Ty,+ j 

it means that, for some index k:, there exists 12 -<_ n + 1 so that 12 ~ S(k2, n + 1). 

Since S(j, n + 1) is empty for j > k~ it follows that k 2 < k 1. Continuing this way, 

we get, as long as Y.+i+t # Ty,+i sequences of integers {k,} and (l~) so that 

1~ ~ S(k~, n + i). By the preceding argument the sequence {ki} is strictly decreasing; 

hence, it has only a finite number of terms. Thus, for some r, Y,+r+ ~ = Ty.+r. 

This concludes the proof  of the proposition as well as that of the theorem. 
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