CONSTRUCTION OF A FIXED POINT FOR CONTRACTIONS IN BANACH SPACE

BY

SHMUEL KANIEL

ABSTRACT

A method for constructing fixed points of contractions in uniformly convex Banach spaces is developed. The fixed point obtained is the limit of one sequence that always converges (provided that a fixed point exists).

Introduction. Let X be a uniformly convex Banach space. Any contraction that takes a bounded closed convex set into itself has a fixed point (cf. Browder $\lceil 1 \rceil$ and Kirk $\lceil 4 \rceil$). It is also known that a contraction has a fixed point if and only if the sequence of Picard iterates is bounded (cf. Kirk $[4]$ and Browder and Petryshin $\lceil 3 \rceil$). A further result is that a fixed point of a contraction can be obtained as a limit of fixed points of strict contractions (cf. Browder $[2]$). Krasnoselskii $[5]$ showed that if T is a contraction with range in a compact set then the definition $x_{n+1} = \frac{1}{2}(x_n + Tx_n)$ will result in a sequence converging to a fixed point of T. In this note we show in the non-compact case how to construct one sequence that always converges to a fixed point, provided that such a point exists. The construction is rather complicated.

It is possible to construct a complicated example showing that Krasnoselskii's construction will not do in the general case (J. Lindenstrauss, oral communication). Probably, a simple example is feasible and should be found.

Let X be uniformly convex. Denote $\alpha(t)$ by:

(1.1)
$$
\alpha(t) = \frac{1}{2} \sup (2 - ||x + y||; ||x|| \le 1, ||y|| \le 1, ||x - y|| = t).
$$

Then $\alpha(t) \rightarrow 0$ implies $t \rightarrow 0$.

For $x, y, z \in X$ denote $a = \max \{ ||x - w||, ||y - w|| \}.$ Then clearly

(1.2)
$$
\|\frac{1}{2}(x+y)-w\| \le a\left(1-\alpha\left(\frac{\|x-y\|}{a}\right)\right).
$$

Received September 20, 1970 and in revised form November 11, 1970

536 SHMUEL KANIEL ISRAEL Israel J. Math.,

It is well known and easy to verify that $a \cdot \alpha((\vert x - y \vert)/a)$ is a monotone decreasing function of a. Indeed, consider points $x, y, z = \frac{1}{2}(x + y)$, w and w_1 where w_1 is on the segment joining z and w. Suppose also that $||x - w|| \ge ||y - w||$. Then

$$
\|x - w\| - \|z - w\| \le \|x - w_1\| + \|w - w_1\| - (\|z - w_1\| + \|w - w_1\|)
$$

(1.3)

$$
= \|x - w_1\| - \|z - w_1\| \le b - \|z - w_1\|
$$

where $b=\max \{||x-w_1||, ||y-w_1||\}$. The right hand side of (1.3) can be taken to be close to $b \cdot \alpha(\Vert x - y \Vert /b)$ while the left hand side is not smaller than *a.* $\alpha(\Vert x-y \Vert/a)$. Hence, $b \cdot \alpha((\Vert x-y \Vert)/b)$ is not smaller than $a \cdot \alpha((\Vert x-y \Vert)/a)$.

T **is a contraction if** $||Tx - Ty|| \le ||x - y||$ **for** $x, y \in D$ **. Let** *T* **be a contraction** that takes some closed convex set C into itself. C is not necessarily bounded and may well coincide with X.

The construction below of a convergent sequence $\{y_n\}$ was motivated by the following reasoning. The definition $y_{n+1} = Ty_n$ does not result, in general, in a convergent sequence. Let us modify the process by defining, *for some n* $y_{n+1} = \frac{1}{2}(y_n + y_i)$ where $l < n$. Our aim is to reduce the distance to some unknown fixed point w. The gain is dependent on two contrasting factors: i) The distance between y_n and y_l . The larger the distance, the bigger the gain. ii) The differences between $\| y_n - w \|$ and $\| y_i - w \|$, the larger the difference the smaller the gain. Had we known the distances $||y_n - w||$ and $||y_1 - w||$ we could have specified a rule of the following type: Take the combination $\frac{1}{2}(y_n + y_i)$ when $\|y_i - w\|$ $- ||y_n - w|| = \delta$ and $||y_n - y_n|| \ge \varepsilon(\delta)$. Since the distances $||y_n - w||$ and $||y_1 - w||$ are not known we devise a different measure to be constructed simultaneously with the sequence.

For that purpose, we choose a fixed sequence of positive numbers $\varepsilon_k \to 0$. Together with y_n we construct an integer valued infinite vector

$$
(m_1(n), m_2(n), \cdots, m_k(n), \cdots)
$$

where only a finite number of the components do not vanish. For such vectors define the sets of integers $S(k, n)$ as follows: $l \in S(k, n)$ if $l < n$ and $m_l(l) = m_l(n)$ for $i \leq k$. The construction is inductive. Choose arbitrary point in the space, denote it by y_0 and set $m_i(0) = 0$ for all i. The passage from n to $n + 1$ is as follows.

Vol. 9, 1971 A FIXED POINT FOR CONTRACTIONS 537

Look at the first k for which either $S(k, n)$ is empty or for some $l \in S(k, n)$ $||y_n - y_l|| \ge \varepsilon_k$. (Since $\varepsilon_k \to 0$ such k exists). If $S(k, n)$ is empty define

(1.4)
$$
y_{n+1} = Ty_n, m_i(n+1) = m_i(n) \qquad S(k,n) = \emptyset
$$

Otherwise, define

$$
(1.5) \t\t\t y_{n+1} = \frac{1}{2}(y_n + y_l)
$$

$$
(1.6) \qquad \qquad m_i(n+1) = m_i(n) \qquad i < k
$$

$$
(1.7) \t mk(n + 1) = mk(n) + 1
$$

$$
(1.8) \t\t\t m_i(n+1) = 0 \t\t i > k
$$

The integer valued vector $m_i(n)$ introduces a lexicographic ordering of the integers n. Denote this ordering by $\cdot \gg \cdot$ (lec). It is easy to verify that this ordering is compatible with the natural ordering. Specifically:

(1.9)
$$
n \ge l \Leftrightarrow n \ge l(\text{lec}) \text{ or } n \equiv l \text{ (lec)}
$$

$$
(1.10) \t\t n+1 \equiv n(\text{lec}) \Leftrightarrow y_{n+1} = Ty_n
$$

The lexicographic ordering according to the first k letters $m_i(n)$, $i \leq k$ will be denoted by $\cdot \gg \cdot$ (lec, k). Also this ordering is compatible with the natural order. It has the properties:

$$
(1.11) \t n > l \Leftrightarrow n \gg l \text{ (lec, } k \text{) or } n \equiv l \text{ (lec, } k)
$$

(1.12)
$$
n > l
$$
 and $n \equiv l$ (lec, k) $\Leftrightarrow l \in S(k, n)$.

A consequence of the last relations is:

LEMMA 1. $S(k, n)$ is composed of all the integers $l: l_0 \leq l < n$. If $n-1 \notin S(k,n)$ then $S(k,n)$ is empty. If $j > k$ then $S(j,n) \subset S(k,n)$; in particular *if* $S(k, n)$ *is empty so is* $S(j, n)$ *.*

The fact that we can estimate the distance of y_n to a (unknown) fixed point w is expressed by the following lemma.

LEMMA 2. Let w be an arbitrary fixed point of T. Let k be a fixed integer. *Denote* $||y_0 - w|| = a$. Then $m_k(n) = r$ implies

(1.13)
$$
\|y_n - w\| \le a \left(1 - r \cdot \alpha \left(\frac{\varepsilon_k}{a}\right)\right).
$$

Proof. By induction on n. (1.13) is certainly true for y_0 . Suppose that it is true for all integers not exceeding *n*. Let $m_k(n + 1) = r$. We have to investigate the following four possible cases.

538 SHMUEL KANIEL SHOW Israel J. Math.,

i)
$$
y_{n+1} = Ty_n, m_k(n+1) = m_k(n) = r
$$

ii)
$$
y_{n+1} = \frac{1}{2}(y_n + y_l)
$$
 and $m_k(n) = m_k(l) = r$

iii)
$$
y_{n+1} = \frac{1}{2}(y_n + y_l)
$$
 and $m_k(n) = m_k(l) = r - 1$

iv)
$$
y_{n+1} = \frac{1}{2}(y_n + y_l)
$$
 and $m_k(n+1) = 0$

For case i):

$$
|| y_{n+1} - w || = || Ty_n - w || = || Ty_n - Tw || \le || y_n - w ||.
$$

Since (1.13) holds for y_n it holds for y_{n+1} as well. For case ii):

(1.14)
$$
\|y_{n+1} - w\| \leq \max\{\|y_n - w\|, \|y_l - w\|\}
$$

establishing again (1.13).

For case iii) we use uniform convexity.

(1.15)
$$
\|y_{n+1} - w\| \le b \left(1 - \alpha \left(\frac{\varepsilon_k}{b}\right)\right)
$$

where $b = \max \{ ||y_n - w||, ||y_i - w|| \}.$

Since $b < a$ (by the induction hypothesis) it follows that

(1.16)
$$
b \cdot \alpha \left(\frac{\varepsilon_k}{b}\right) \geq a \cdot \alpha \left(\frac{\varepsilon_k}{a}\right).
$$

The inductive hypothesis is:

$$
(1.17) \t b \le a \left(1 - (r - 1)\alpha \left(\frac{\varepsilon_k}{a}\right)\right)
$$

Substitute now (1.17) and (1.16) in (1.15) to get the desired estimate. In case iv) we use (1.14) and the fact that $r = 0$, establishing the lemma.

REMARK. $||y_n - w||$ is not necessarily a monotone function of *n*. Our main result is:

THEOREM. *The sequence* y_n *defined in* (1.4) *or* (1.5) *converges to a fixed point of T if (and obviously only if) T has one.*

The theorem will be proved via the following three propositions.

PROPOSITION 1: *If* T has a fixed point then $m_i(n)$ is constant for sufficiently *large n (depending on i).*

PROPOSITION 2. If, for all $i, m_i(n)$ is constant for sufficiently large n (de*pending on i) then* $\{y_n\}$ *converges.*

PROPOSITION 3: *If* $\{y_n\}$ *converges it converges to a fixed point of T.*

PROOF OF PROPOSITION 1. The left hand side of (1.13) is non-negative, therefore the $m_k(n)$ are bounded, precisely:

(1.18)
$$
r = m_k(n) \leq a \left[\alpha \left(\frac{\varepsilon_k}{a} \right) \right]^{-1}
$$

The $m_k(n)$ are constructed so that either $m_k(n) \geq m_k(n-1)$ or $m_k(n) = 0$. The last case holds when for some $l < k$: $m_l(n) = m_l(n-1) + 1$. Hence, the first of these integer valued functions: $m_1(n)$ is non-decreasing. Since, by (1.18) it is bounded it must be constant for $n \geq n_1$. For $n \geq n_1$ $m_2(n)$ will be non-decreasing and again, by (1.18) it must be constant for $n \ge n_2$. Thus, inductively, the proposition is established for all k .

PROOF OF PROPOSITION 2. Let ε be given. Choose $\varepsilon_k < \varepsilon$ and consider n_k so large that $m_i(n)$ is constant for all $i \leq k$ and $n \geq n_k$. By the definition of $S(k, n)$ it follows that $l \in S(k,n)$ for $n > l > n_k$. The inequality $||y_n - y_l|| \ge \varepsilon_k$ implies now by the definition of $m_i(n)$ that for some $i \leq k$ $m_i(n + 1) > m_i(n)$ contrary to the assumption of constancy. Thus, $||y_n - y_l|| < \varepsilon_k < \varepsilon$ for all $n, l: n > l > n_k$, i.e., Cauchy's criterion is satisfied.

PROOF OF PROPOSITION 3. Denote $y = \lim y_n$. We will show that for any index *n* there exists an *r* so that $y_{n+r+1} = Ty_{n+r}$. If this is the case then, clearly, $y = Ty$.

Now, if $y_{n+1} \neq Ty_n$ it means that, for some l_1 and k_1 , $y_{n+1} = \frac{1}{2}(y_n + y_{l_1})$ where $l_1 \in S(k_1, n)$. Hence, $m_{k_1}(n+1) > m_{k_1}(n)$. Therefore, by Lemma 1 $S(k_1, n+1)$ is empty and, consequently, $S(j, n + 1)$ is empty for $j > k_1$. If $y_{n+2} \neq Ty_{n+1}$ it means that, for some index k_2 , there exists $l_2 \leq n + 1$ so that $l_2 \in S(k_2, n + 1)$. Since *S*(*j*, *n* + 1) is empty for $j \geq k_1$ it follows that $k_2 < k_1$. Continuing this way, we get, as long as $y_{n+i+1} \neq Ty_{n+i}$ sequences of integers $\{k_i\}$ and $\{l_i\}$ so that $l_i \in S(k_i, n + i)$. By the preceding argument the sequence $\{k_i\}$ is strictly decreasing; hence, it has only a finite number of terms. Thus, for some r, $y_{n+r+1} = Ty_{n+r}$. This concludes the proof of the proposition as well as that of the theorem.

540 SHMUEL KANIEL Israel J. Math.,

REFERENCES

1. F. E. Browder, *Non-expansive nonlinear operators in a Banaeh space,* Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044.

2. F. E. Browder, *Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces,* Arch. Rational Mech. Anal. 24 (1967), 82-90.

3. R. E. Browder and W. V. Petryshin, *The solution by iteration of nonlinear functional equations in Banach spaces,* Bull. Amer. Math. Soc. 72 (1966), 571-575.

4. W. A. Kirk, *A fixed point theorem for mappings which do not increase distance,* Amer. Math. Monthly 72 (1965), 1004-1006.

5. M. A. Krasnoselskii, *Two remarks on the method of successive approximations,* (Russian), Uspehi Math. Nauk. 10 (1955), 123-127.

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM